1. Air flows through a nozzle of diameter 1.3 mm having a discharge coefficient of 0.95 , from a pressure of 5 atm to a pressure of 1 atm at $25^{\circ} \mathrm{C}$. Density of air will be:
A) $5.930 \mathrm{~g} / \mathrm{cm}^{3}$
B) $59.30 \mathrm{~kg} / \mathrm{cm}^{3}$
C) $0.593 \mathrm{~kg} / \mathrm{m}^{3}$
D) None

Ans (A)

$$
\rho=\frac{p M}{R T}=\frac{5 \times 101325 \times 29}{8314 \times 298}=5.93 \mathrm{~kg} \mathrm{~m}^{-3}
$$

2. For Q .1 Maximum velocity will be:
A) $3.15 \mathrm{~m} / \mathrm{s}$
B) $2.95 \mathrm{~m} / \mathrm{s}$
C) $0.315 \mathrm{~km} / \mathrm{s}$
D) $3150 \mathrm{~m} / \mathrm{s}$

Answer (C)
Now, upstream pressure is 5 times greater than that of downstream pressure. Hence pressure ratio is at critical condition

$$
\begin{aligned}
& v_{0}=\sqrt{\frac{2 \gamma p}{(\gamma-1) \rho}\left[1-\left(\frac{p_{0}}{p}\right)_{c r}^{\frac{\gamma-1}{\gamma}}\right]} \\
& =\sqrt{\frac{2 x 1.4 \times 5 \times 101325}{(1.4-1) 5.93}\left[1-(0.528)^{\frac{1.4-1}{1.4}}\right]} \\
& =315.83 \mathrm{~ms}^{-1} \\
& =0.315 \mathrm{kms}^{-1}
\end{aligned}
$$

3. For Q. 1 Mass flow rate will be:
A) $669 \times 10^{-6} \mathrm{~kg} / \mathrm{s}$
B) $24.09 \mathrm{Kg} / \mathrm{h}$
C) Both A\&B
D) None of these

Ans. (A)

Now, $A_{0}=\frac{\pi}{4}(0.0013)^{2}=1.327 \times 10^{-6} \mathrm{~m}^{2}$
$\therefore W=C_{D} A_{0} \sqrt{\frac{2 \gamma p \rho}{(\gamma-1)}\left[\left(\frac{p_{0}}{P}\right)_{c r}^{\frac{2}{\gamma}}-\left(\frac{p_{0}}{p}\right)_{c r}^{\frac{\gamma+1}{\gamma}}\right]}$
$=0.95 \times 1.327 \times 10^{-6} x \sqrt{\frac{2 x 1.4 \times 101325 \times 5.93}{(1.4-1)}\left[(0.528)^{\frac{2}{1.4}}-(0.528)^{\frac{1.4+1}{1.4}}\right]}$
$=6.69 \times 10^{-4} \mathrm{~kg} \mathrm{~s}^{-1}, \quad$ or, $2.409 \mathrm{~kg} \mathrm{~h}^{-1}$
4. Methane is being pumped through a 50.0 cm ID pipeline for a distance of $1.0 \times 10^{5} \mathrm{~m}$ at a rate of 2.0 Kg Mole/s. Mass density of methane is
a) $40.746 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s}$
b) $162.984 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s}$
c) $1273.31 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s}$
d) $5093.25 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s}$

Ans. (b)

$$
\mathrm{G}=2.0 \frac{\mathrm{Kg} \text { Mole }}{\mathrm{s}} \times 16 \frac{\mathrm{Kg}}{\mathrm{Kg} \mathrm{Mole}} \times \frac{1}{\frac{\pi \mathrm{D}^{2}}{4} \mathrm{~m}^{2}}=\frac{2 \times 16 \times 4}{3.1416 \times .5^{2}}=162.984 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s}
$$

5. For adiabatic flow, $P V^{\gamma}=C$ where γ is
a) γ is the ratio of heat capacities at constant pressure and at constant volume respectively.
b) γ is the ratio of heat capacities at constant volume and at constant pressure respectively.
c) γ is always 1
d) None

Ans. (a)
$\gamma=C_{p} / C_{v}$
6. Discharge through nozzle is maximum when,
a) $\mathrm{P} / \mathrm{P}_{\mathrm{o}}=0.528$
b) $\mathrm{P}_{\mathrm{o}} / \mathrm{P}=0.528$
c) $\mathrm{P} / \mathrm{P}_{\mathrm{o}}<0.528$
d) All of the above

Ans. (b)
7. A nozzle of 1 mm dia with a coefficient of discharge of 0.92 is to deliver air from 4 atm pressure to 3 atm pressure at $35^{\circ} \mathrm{C}$. Density of air:
a) $4.59 \mathrm{~kg} / \mathrm{m}^{3}$
b) $3.44 \mathrm{~kg} / \mathrm{m}^{3}$
c) $4.59 \mathrm{~g} / \mathrm{m}^{3}$
d) $3.44 \mathrm{~g} / \mathrm{m}^{3}$

Ans. (a)
$\rho=\frac{\mathrm{pM}}{\mathrm{RT}}=\frac{4 \times 101325 \times 28.97}{8314 \times 308}=4.59 \mathrm{~kg} / \mathrm{m}^{3}$
8. In Q. 8 Velocity of air
a) $260.15 \mathrm{~m} / \mathrm{s}$
b) $220.85 \mathrm{~m} / \mathrm{s}$
c) $220.85 \mathrm{~cm} / \mathrm{s}$
d) None

Ans. (b)
We know that, $v_{0}=\sqrt{\frac{2 \gamma p}{(\gamma-1) \rho}\left[1-\left(\frac{p_{0}}{p}\right)^{\frac{\gamma-1}{\gamma}}\right]}$
$\mathrm{v}_{0}=\sqrt{\frac{2 \times 1.4 \times 4 \times 101325}{(1.4-1) \times 4.59}\left[1-\left(\frac{3}{4}\right)^{\frac{1.4-1}{1.4}}\right]}$
$=220.85 \mathrm{~m} / \mathrm{s}$
9. In Q. 8 Mass flow rate
a) $2.48 \mathrm{~kg} / \mathrm{h}$
b) $2.15 \mathrm{~kg} / \mathrm{h}$
c) $2.48 \mathrm{~kg} / \mathrm{s}$
d) $2.15 \mathrm{~kg} / \mathrm{s}$

Ans. (b)

$$
\mathrm{A}_{0}=\frac{\pi \mathrm{D}^{2}}{4}=\frac{\pi \times .001^{2}}{4}=7.85 \times 10^{-7} \mathrm{~m}^{2}
$$

Now, we know that

$W=0.92 \times 7.85 \times 10^{-7} \sqrt{\frac{2 \times 1.4 \times 4 \times 101325 \times 4.59}{(1.4-1)}\left[\left(\frac{3}{4}\right)^{2 / 1.4}-\left(\frac{3}{4}\right)^{\frac{1.4+1}{1.4}}\right]}$
$=0.000597 \mathrm{Kg} / \mathrm{s}=2.15 \mathrm{Kg} / \mathrm{h}$
10. In Q. 8 Maximum velocity of air
a) $370.89 \mathrm{~m} / \mathrm{s}$
b) $321.20 \mathrm{~m} / \mathrm{s}$
c) $260.15 \mathrm{~m} / \mathrm{s}$
d) $220.85 \mathrm{~m} / \mathrm{s}$

Ans. (a)
At critical pressure ratio, i.e., $p_{0} / p=0.528$, the velocity will be maximum

$$
v_{0}=\sqrt{\frac{2 \gamma p}{(\gamma-1) \rho}\left[1-\left(\frac{p_{0}}{p}\right)_{c r}^{\frac{\gamma-1}{\gamma}}\right]}
$$

11. In Q. 8 Maximum mass flow rate is
a) $2.594 \mathrm{~kg} / \mathrm{h}$
b) $3 \mathrm{~kg} / \mathrm{h}$
c) $2.48 \mathrm{~kg} / \mathrm{h}$
d) None

Ans. (b)
At critical pressure ratio, i.e., $p_{0} / p=0.528$, the discharge will be maximum
12. The unit of rate of mass discharge from the nozzle "W" will be
a) $\mathrm{kg} / \mathrm{hr}$
b) $\mathrm{kg}-\mathrm{hr}$
c) $\mathrm{kg}-\mathrm{m} / \mathrm{s}$
d) None of the above

Ans. (a)
13. The expression for the Bernoulli's equation is
a) $\frac{p}{\rho}+\frac{v^{2}}{2}+g z=$ constant
b) $\frac{p}{\rho}+\frac{v^{2}}{2 g}+g z=$ constant
c) $\frac{p}{\rho g}+\frac{v^{2}}{2 g}+g z=$ constant
d) $\frac{p}{\rho}+\frac{v^{2}}{2 g}+z=$ constant

Ans. (a)
14. For adiabatic flow
a) $p V^{\gamma}=\mathrm{C}$
b) $p V=\mathrm{C}$
c) $p V^{\gamma-1}=\mathrm{C}$
d) None of the above

Ans. (a)

